FAIRCHILD

SEMICONDUCTOR

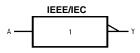
NC7SZU04 TinyLogic® UHS Unbuffered Inverter

General Description

The NC7SZU04 is a single unbuffered inverter from Fairchild's Ultra High Speed Series of TinyLogic®. The special purpose unbuffered circuit design is primarily intended for crystal oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range.

October 1996

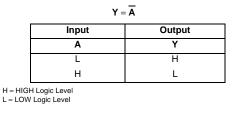
Revised August 2004


Features

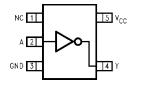
- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- Unbuffered for crystal oscillator and analog applications
- Balanced Output Drive; ± 16 mA at 4.5V V_{CC}
- Broad V_{CC} Operating Range; 1.65V–5.5V
- Low Quiescent Power; $I_{CC} < 2 \mu A$, $V_{CC} = 5.5V$, $T_A = 25^{\circ}C$
 - $T_A = 25^{\circ}C$

Ordering Code:

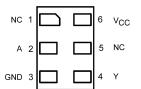
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As	
NC7SZU04M5X	MA05B	7ZU4	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7SZU04P5X	MAA05A	ZU4	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	
NC7SZU04L6X	MAC06A	C5	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel	


Logic Symbol

Pin Descriptions


Pin Names	Description
А	Input
Y	Output
NC	No Connect

Function Table


Connection Diagrams

Pin Assignments for SOT23 and SC70

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2004 Fairchild Semiconductor Corporation DS012166

Absolute Maximum Ratings(Note 1)

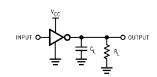
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
@ $V_{IN} > V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 0.5V$, $V_{CC} = GND$	+50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T _J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating
Conditions (Note 2)

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions			
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
VIH	HIGH Level Input Voltage	1.8 to 2.7	0.85 V _{CC}			0.85 V _{CC}		V		
		3.0 to 5.5	0.8 V _{CC}			0.8 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.8 to 2.7			0.15 V _{CC}		0.15 V _{CC}	V		
		3.0 to 5.5			0.2 V _{CC}		0.2 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.6	1.8		1.6				
		2.3	2.1	2.3		2.1		V	$V_{IN} = V_{IL}$	$I_{OH} = -100 \ \mu A$
		3.0	2.7	3.0		2.7				
		4.5	4.0	4.4		4.0				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -4 \text{ mA}$
		3.0	2.4	2.75		2.4		V	$V_{IN} = GND$	$I_{OH} = -8 \text{ mA}$
		3.0	2.3	2.61		2.3				$I_{OH} = -12 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -16 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		1.8		0.0	0.2		0.2			
		2.3		0.0	0.2		0.2	V	$V_{IN}=V_{IH}$	$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.3		0.3			
		4.5		0.0	0.5		0.5			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 4 \text{ mA}$
		3.0		0.17	0.4		0.4	V	$V_{IN} = V_{CC}$	$I_{OL} = 8 \text{ mA}$
		3.0		0.25	0.55		0.55			$I_{OL} = 12 \text{ mA}$
		4.5		0.26	0.55		0.55			$I_{OL} = 16 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μA	$V_{IN} = 5.5V,$	GND
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	V _{IN} = 5.5V,	GND
ICCPEAK	Peak Supply Current in	1.8		2					$V_{OUT} = Open$ $V_{IN} = Adjust for$ Peak I _{CC} Current	
	Analog Operation	2.5		4				mA		
		3.3		10				ШA		
		5.0		30						

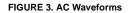
Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Unite	Conditions	Figure		
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number	
t _{PLH} ,	Propagation Delay	1.65	1.0		11.7	1.0	12.1			_	
t _{₽HL}		1.8	1.0		8.5	1.0	9.0	1			
		2.5 ± 0.2	0.8		6.2	0.8	6.5	ns	C _L = 15 pF,	Figures 1, 3	
		$\textbf{3.3}\pm\textbf{0.3}$	0.5		4.5	0.5	4.8		$R_L = 1 \ M\Omega$	1, 0	
		5.0 ± 0.5	0.5		3.9	0.5	4.1				
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.0		6.0	1.0	6.5		C _L = 50 pF,	Figures 1, 3	
t _{PHL}		5.0 ± 0.5	0.8		5.0	0.8	5.5	ns	$R_L=500\Omega$		
CIN	Input Capacitance	0		4.5				pF			
C _{PD}	Power Dissipation	3.3		6.3				~ F	(Nata 2)	Figure 0	
	Capacitance	5.0		9.5				pF	pr (Note	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).$

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

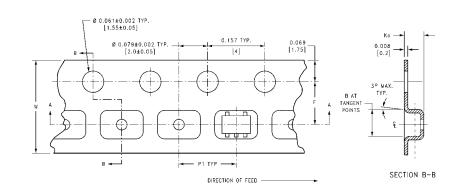


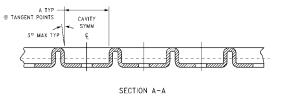
Application Note: When operating the NC7SZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I_{CCPEAK} specification in the DC Electrical Characteristics table.

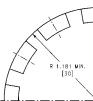
 $\label{eq:linear} \begin{array}{l} \mbox{Input} = \mbox{AC} \mbox{ Waveform; } t_r = t_f = 1.8 \mbox{ ns;} \\ \mbox{PRR} = \mbox{variable; } \mbox{Duty Cycle} = 50\% \end{array}$

FIGURE 2. I_{CCD} Test Circuit

t_r = 3 ns --t₄ = 3 ns $v_{\rm CC}$ 90% 90% INPUT 50% 50% 10% 10% GND ^t₽LH ^tPHL \mathbf{v}_{OH} OUTPUT 50% 50% $V_{\rm OL}$

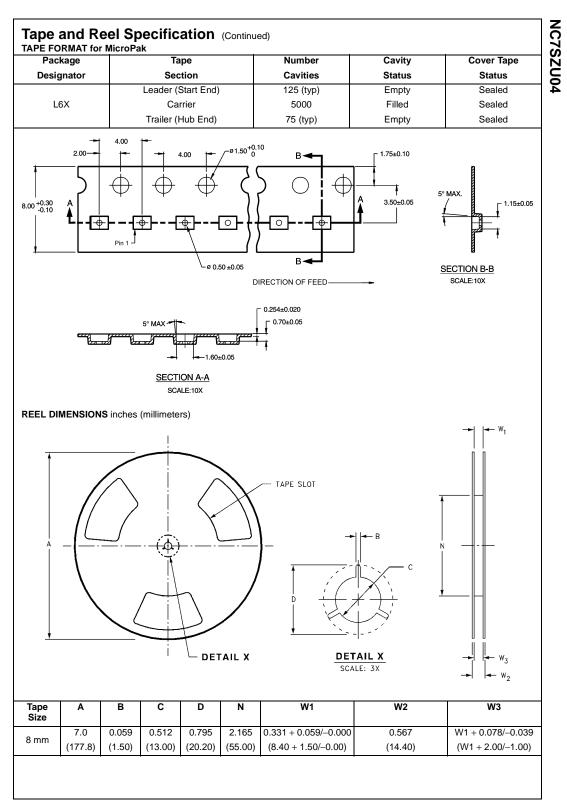

4
0
Ñ
S
N
C
Ž

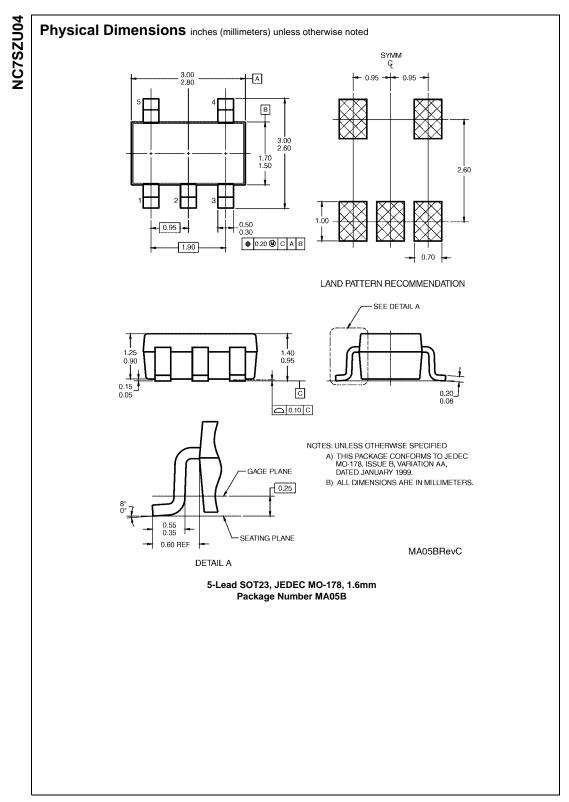

Tape and Reel Specification

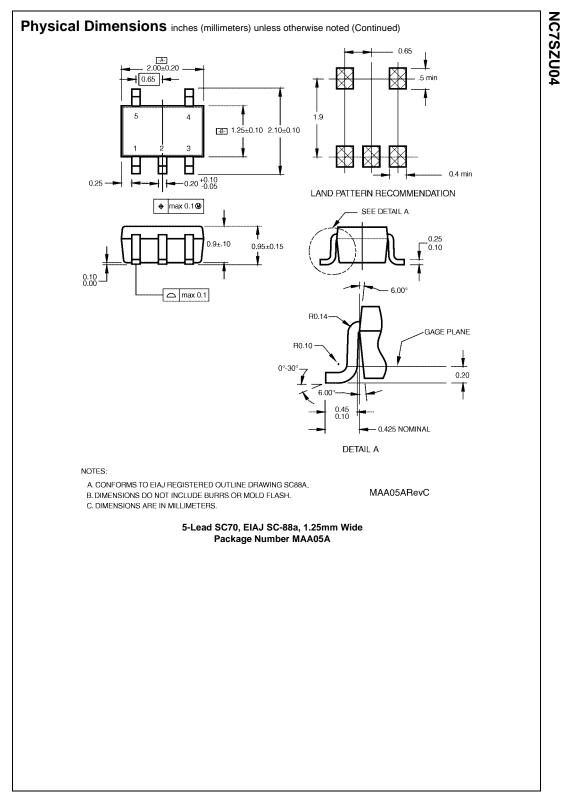

.

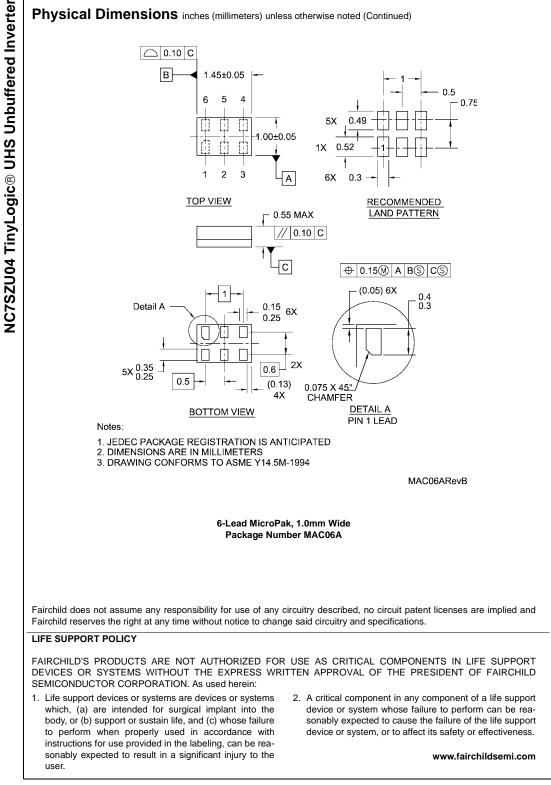
TAPE FORMAT for S Package	Таре	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5X, P5X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)








BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	9 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
	8 mm	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	9 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
	8 mm	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

